본문 바로가기

신경망4

[딥러닝] CNN, 합성곱 신경망 이번에 소개할 내용은 합성곱 신경망의 개념과 등장 배경, 구성 요소 등에 대한 내용이다. 합성곱 신경망이 등장하기 이전 딥러닝 모델은 MLP (Multi-layer Perceptron), 즉 퍼셉트론을 다층으로 쌓아서 사용했었다. 하지만 MLP 모델의 특성상 입력층, 출력층 모두 1차원이어야 하기 때문에 이미지 등 위치 정보가 중요한 데이터를 다루기에 적합하지 않다는 문제가 발생한다. 이 때 위치 정보를 살리기 위해서 합성곱 아이디어를 신경망 모델에 적용한 모델이 CNN이다. 합성곱 신경망 개요 오늘날 사용되는 많은 CNN 구조의 기본 뿌리는 LeNet에서 유래했다.  이미지 input을 받아서 행렬곱을 통해 위치적으로 중요한 부분에 더 큰 가중치를 두어 계산하는 방식으로 위치 정보를 보존하고 채널과 층.. 2024. 7. 8.
[딥러닝] 밑바닥부터 시작하는 딥러닝 공부 3-2 : MNIST 손글씨 숫자 인식 및 구현 이번에 소개할 내용은 MNIST 손글씨 숫자 인식 및 구현입니다. 1. MNIST 데이터셋이번 포스팅에서 사용할 데이터셋은 MNIST 손글씨 숫자 이미지 집합입니다. MNIST는 기계학습 분야에서 매우 유명한 데이터셋으로 간단한 실험부터 논문으로 발표되는 연구까지 다양하게 활용되고 있습니다. 이미지 인식 혹은 기계학습 논문에서 실험용 데이터로 자주 등장하는 걸 볼 수 있습니다. MNIST 데이터셋은 아래와 같이 0 ~ 9 까지의 숫자 이미지로 구성됩니다. TRAIN 이미지가 60,000장, TEST 이미지가 10,000장으로 구성되어 있습니다. 일반적으로 이 TRAIN 이미지들을 사용해 모델을 학습 후 학습 모델로 TEST 이미지를 얼마나 정확하게 분류하는 지를 평가합니다. MNIST 이미지 데이터는 2.. 2024. 2. 17.
[딥러닝] 밑바닥부터 시작하는 딥러닝 공부 3-2 : 행렬 곱연산과 신경망 구현 이번에 소개할 내용은 단층 퍼셉트론의 한계를 해결한 행렬곱연산과 신경망구현에 대한 이야기입니다.   저번 포스팅 내용은 신경망과 활성화함수에 대해서였습니다. 2024.01.31 - [Deep Learning] - [딥러닝] 밑바닥부터 시작하는 딥러닝 공부 3-1 : 신경망과 활성화 함수 [딥러닝] 밑바닥부터 시작하는 딥러닝 공부 3-1 : 신경망과 활성화 함수이번에 소개할 내용은 단층 퍼셉트론의 한계를 해결한 인공신경망과 활성화함수에 대한 이야기입니다. 저번 포스팅 내용은 퍼셉트론의 한계 및 다중 퍼셉트론에 대해서였습니다. 2024.01.24 - [Deepdangingsu.tistory.com1. 다차원 배열의 계산넘파이 패키지의 다차원 배열을 사용한 계산법을 활용하면 신경망을 구현할 때 효율적인 구현이.. 2024. 2. 11.
[딥러닝] 밑바닥부터 시작하는 딥러닝 공부 3-1 : 신경망과 활성화 함수 이번에 소개할 내용은 단층 퍼셉트론의 한계를 해결한 인공신경망과 활성화함수에 대한 이야기입니다. 저번 포스팅 내용은 퍼셉트론의 한계 및 다중 퍼셉트론에 대해서였습니다. [딥러닝] 밑바닥부터 시작하는 딥러닝 공부 2-1 : 퍼셉트론의 한계 및 다중 퍼셉트론이번에 소개할 내용은 밑시딥 2장의 뒷부분 퍼셉트론의 한계와 다중 퍼셉트론이다. 저번 내용은 퍼셉트론의 개념, AND, NAND, OR 게이트를 설명했다. 1. 이 3가지 논리 회로를 구현할 수 있었지만 배dangingsu.tistory.com1. 퍼셉트론에서 신경망으로인공신경망이란?신경망은 그 이름에서 알 수 있듯이, 사람의 뇌 신경을 닮았다고 해서 붙여진 이름입니다.인공신경망은 수많은 '노드'들로 구성됩니다. 하나의 노드는 여러 함수로 이루어진 하나의.. 2024. 1. 31.
728x90
반응형